Mesoporous Non-stacked Graphene-receptor Sensor for Detecting Nerve Agents
نویسندگان
چکیده
A novel gas sensor consisting of porous, non-stacked reduced graphene oxide (NSrGO)-heaxfluorohydoroxypropanyl benzene (HFHPB) nanosheets was successfully fabricated, allowing the detection of dimethyl methyl phosphonate (DMMP), similar to sarin toxic gas. The HFHPB group was chemically grafted to the NSrGO via a diazotization reaction to produce NSrGO-HFHPB. The NSrGO-HFHPB 3D film has a mesoporous structure with a large pore volume and high surface area that can sensitively detect DMMP and concurrently selectively signal the DMMP through the chemically-attached HFHPB. The DMMP uptake of the mesoporous NSrGO-HFHPB was 240.03 Hz, 12 times greater than that of rGO-HFHPB (20.14 Hz). In addition, the response rate of NSrGO-HFHPB was faster than that of rGO-HFHPB, an approximately 3 times more rapid recovery due to the mesoporous structure of the NSrGO-HFHPB. The NSrGO-HFHPB sensor exhibited long-term stability due to the use of robust carbon and resulting high resistance to humidity.
منابع مشابه
Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells
Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...
متن کاملThe Possibility of Selective Adsorption and Sensing of the Noble Gaseous Species by the C20 Fullerene, the Graphene Sheets, and the N4B4 Cluster
There are only a handful reports about the sensor systems having the ability of detecting the existence of the noble gases. Chemical reluctance of these gaseous species causes them to have no chemical interactions like hydrogen bonding with the chemically designed nano-sized sensors. Noble gasses usually have no atomic charges nor do change the total polarity of the molecular sensor systems. Th...
متن کاملQuantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملA New Method for Detecting Ships in Low Size and Low Contrast Marine Images: Using Deep Stacked Extreme Learning Machines
Detecting ships in marine images is an essential problem in maritime surveillance systems. Although several types of deep neural networks have almost ubiquitously used for this purpose, but the performance of such networks greatly drops when they are exposed to low size and low contrast images which have been captured by passive monitoring systems. On the other hand factors such as sea waves, c...
متن کاملFabrication of Graphene–LaMnO3 Sensor for Simultaneous Electrochemical Determination of Dopamine and Uric Acid
Dopamine (DA) and uric acid (UA) are two of important bimolecular widely circulated in body blood. Therefore, development of simple and rapid methods for simultaneous determination of them in routine analysis has a great significance for many researchers. Therefore, for the first time, nanocomposite of graphene (Gr)LaMnO3has been utilized to fabricate the new ...
متن کامل